An Application of Economics & Environmental Planning:
The Impacts of Variable Rate Irrigation (VRI) Technology on Net Farm Income

Agricultural Economics Professor Karina Schoengold
MCRP Graduate Candidate Hannah Jones

RWBJV Informational Seminar
February 1, 2018
This map was developed with spatial data from the Playa Lakes Joint Venture Nebraska Playa Decision Support Tools.
Landowner 1

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Landowner 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pivot Acres</td>
<td>252 (100 = VRI)</td>
</tr>
<tr>
<td>Wetland Area</td>
<td>55</td>
</tr>
<tr>
<td>Predominant Soil Types</td>
<td>Scott, Butler, & Fillmore</td>
</tr>
<tr>
<td>Ponding Frequency</td>
<td>0.91</td>
</tr>
<tr>
<td>Crop History</td>
<td>Corn</td>
</tr>
</tbody>
</table>

Landowner 2

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Landowner 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pivot Acres</td>
<td>105</td>
</tr>
<tr>
<td>Wetland Area</td>
<td>70</td>
</tr>
<tr>
<td>Predominant Soil Types</td>
<td>Scott, Fillmore, & Massie</td>
</tr>
<tr>
<td>Ponding Frequency</td>
<td>0.73</td>
</tr>
<tr>
<td>Crop History</td>
<td>Corn, grassland, pasture</td>
</tr>
</tbody>
</table>

Data Collection

Quantitative Data

Crop Input Costs
1. Revenue & Yield
2. Seed & Fertilizer
3. Irrigation
4. Maintenance
5. Machinery
6. Overhead management
7. Labor
8. Property Taxes or Cash Rent

VRI Sites 2014-2017

Reference Sites 2014-2016

Pre-VRI 2014 & 2015
Post-VRI 2016-2017

Data collection form
Enterprise budgets used to allocate expenses & analyze net income
NASS statistics on market & weather related conditions 2000-2017
Landowner 1

2017
Price Differential: $23.00/ac.
VRI Yield: 172 bu./ac.
Non-VRI Yield: 172 bu./ac.

Landowner 1 Payback Based on 2017 Corn VRI Data
2017
Price Differential: $33.81/ac.
VRI Yield: 248 bu./ac.
Non-VRI Yield: N/A
Changes in Yield

<table>
<thead>
<tr>
<th>Year</th>
<th>Percent Difference between L1 & L2</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>3.65%</td>
</tr>
<tr>
<td>2015</td>
<td>10.80%</td>
</tr>
<tr>
<td>2016</td>
<td>-20.00%</td>
</tr>
<tr>
<td>2017</td>
<td>44.19%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pre & Post VRI</th>
<th>Percent Change in Yield between L1 & L2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-VRI</td>
<td>7.23%</td>
</tr>
<tr>
<td>Post VRI</td>
<td>12.09%</td>
</tr>
</tbody>
</table>

Corn Yield Differences Between L1 (Non-VRI Field) & L2 (VRI Field)

- **Pre-VRI**:
 - 2014: 219, 2014: 227
 - 2015: 213
 - 2016: 205, 2016: 164
 - 2017: 172

- **Post VRI**:
 - 2014: 219, 2014: 227
 - 2015: 213
 - 2016: 205, 2016: 164
 - 2017: 172

- **Percent Change**:
 - Pre-VRI: 7.23%
 - Post-VRI: 12.09%
Landowner 2 – 10% Price & Yield Increase

Price Differential: $33.81/ac.
Market Price: $3.10
Yield: 248 bu./ac.

Price Differential: $65.03/ac.
10% Price Increase: $3.41
10% Yield Increase: 272.8 bu./ac.
Landowner 2 Marginal Benefit without Landowner 1 Maintenance Costs in 2017

<table>
<thead>
<tr>
<th>Price Differential</th>
<th>Comparison with Maintenance Costs – No Change in Price & Yield</th>
<th>Comparison without Maintenance Costs – Averaged Price & Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Landowner 2 – $33.81/ac.</td>
<td></td>
<td>No Benefit</td>
</tr>
</tbody>
</table>

Landowner 1 Maintenance Costs in 2017 - $25,986
Scenario 1: Natural Gas for VRI Acres instead of Electricity

Marginal Benefit
Price Differential: $23.00/ac.

Marginal Benefit
Price Differential: $32.37/ac.
Scenario 2: Reduced Irrigation Application

Marginal Benefit

Price Differential: $23.00/ac.
Original Application Rate: 2.25 inches

20% Reduction

Price Differential: $29.00/ac.
20% Reduction Rate: 1.8 inches
Landowner 1 Grazing Opportunities

<table>
<thead>
<tr>
<th>VRI Crop Acres</th>
<th>Wetland Acres</th>
<th>Grazing Revenue</th>
<th>Per Acre Crop Benefit</th>
<th>Per Acre Net Income</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>55</td>
<td>$4,230.00</td>
<td>$42.30</td>
<td>$34.00</td>
</tr>
<tr>
<td>80</td>
<td>75</td>
<td>$5,767.50</td>
<td>$72.09</td>
<td>$61.00</td>
</tr>
<tr>
<td>60</td>
<td>95</td>
<td>$7,305.50</td>
<td>$121.76</td>
<td>$108.00</td>
</tr>
</tbody>
</table>

The pie charts illustrate the distribution of crop and wetland acres for each of the scenarios listed above.
Alternative Grazing Opportunities

<table>
<thead>
<tr>
<th>VRI Crop Acres</th>
<th>Wetland Acres</th>
<th>Grazing Revenue</th>
<th>Per Acre Crop Benefit</th>
<th>Per Acre Net Income</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>55</td>
<td>$4,230.00</td>
<td>$42.30</td>
<td>$34.00</td>
</tr>
<tr>
<td>80</td>
<td>75</td>
<td>$5,767.50</td>
<td>$72.09</td>
<td>$61.00</td>
</tr>
<tr>
<td>60</td>
<td>95</td>
<td>$7,305.50</td>
<td>$121.76</td>
<td>$108.00</td>
</tr>
</tbody>
</table>

Marginal Benefit
Price Differential: $50.00/ac.

Landowner 1 Payback with Grazing Opportunities

![Graph showing payback with cost-share levels and discount rates](image-url)
Takeaways:

1. More time is necessary to fully learn how to use the technology
2. Grazing is critical for profitability of this investment
3. Altering yield, market, and irrigation variables; shows profitability at some levels of cost-share assistance
4. Some variables cannot be controlled (market fluctuations)
5. Results do not include social/conservation benefits of wetland restoration

Further Research:

1. Larger sample size
2. Longer tracking period
3. Consistent & detailed information is imperative for further analysis